MATH20132 Calculus of Several Variables. 2020-21

Problems 8 Tangent Spaces & Planes

Tangent Planes to level sets.

1. For each of the following level sets find the tangent plane to the surface at the given point **p** and give your answer *as a level set*.

i. $(x, y, z)^T \in \mathbb{R}^3$: $x^2 + y^2 + z^2 = 14$ with $\mathbf{p} = (2, 1, -3)^T$, ii. $(x, y, z)^T \in \mathbb{R}^3$: $x^2 + 3y^2 + 2z^2 = 9$, xyz = -2, with $\mathbf{p} = (2, -1, 1)^T$, iii. $(x, y, u, v) \in \mathbb{R}^4$:

$$x^{3} - 3yu + u^{2} + 2xv = 12$$

$$xv^{2} + 2y^{2} - 3u^{2} - 3yv = -3.$$

with
$$\mathbf{p} = (1, 2, -1, 2)^T$$
,

2. Return to your answers of Question 1 and write them as graphs instead of level sets. Then give a basis for the Tangent Space.

Tangent Spaces for Image sets.

3. In each case, find parametric equations for the Tangent Plane passing through the point $\mathbf{F}(\mathbf{q})$ on the parametric surfaces given by the following functions.

i.
$$\mathbf{F}((x,y)^T) = (x^2 + y^2, xy, 2x - 3y)^T$$
, at $\mathbf{q} = (1,2)^T$,
ii. $\mathbf{F}((x,y)^T) = (xy^2, x^2 + y, x^3 - y^2, y^2)^T$, at $\mathbf{q} = (-1,2)^T$,
iii. $\mathbf{F}(t) = (\cos t, \sin t, t)^T$ at $q = 3\pi$.

4. Return to Question 7 on Sheet 6. You were asked to show, by using the Implicit Function Theorem, that the following equations

$$x^{2} + y^{2} + 2uv = 4$$
(1)
$$x^{3} + y^{3} + u^{3} - v^{3} = 0,$$

determine u and v as functions of x and y for $(x, y)^T$ in an open subset of \mathbb{R}^2 containing the point $\mathbf{q} = (-1, 1)^T \in \mathbb{R}^2$. The implicit function theorem is an existence result, it does not say what u and v are as functions of x and y. Nonetheless it is possible to find their partial derivatives and you were asked to do this. The answer was

$$\frac{\partial u}{\partial x}(\mathbf{q}) = 0, \ \frac{\partial v}{\partial x}(\mathbf{q}) = 1, \ \frac{\partial u}{\partial y}(\mathbf{q}) = -1 \text{ and } \frac{\partial v}{\partial y}(\mathbf{q}) = 0.$$

Use these partial derivatives to find a basis for the tangent space at $\mathbf{p} = (-1, 1, 1, 1)^T$.

5. Let $S(\mathbf{u}) = (\cos u \sin v, \sin u \sin v, \cos v)^T$, where $\mathbf{u} = (u, v)^T$, with $0 \le v \le \pi$, $0 \le u \le 2\pi$. This is the surface of the unit ball in \mathbb{R}^3 in standard spherical coordinates.

- i. Show that the tangent space of S at $\mathbf{q} = (\pi, \pi/2)^T$ is $T_{\mathbf{p}}S = \text{Span}(\mathbf{e}_2, \mathbf{e}_3)$, where $\mathbf{p} = S(\mathbf{q})$.
- ii. Determine also the tangent space at $\mathbf{q} = (0, \pi/4)^T$.
- iii. a. Let $\mathbf{w} = (1, 2, -1)^T / \sqrt{6}$. Show that $\mathbf{w} \in T_{\mathbf{p}}S$ where $\mathbf{p} = S\left((0, \pi/4)^T\right)$.

b. (Tricky) The definition of $T_{\mathbf{p}}S$ is that $\mathbf{w} \in T_{\mathbf{p}}S$ only if there exists a curve $a : I \to S$ such that $\alpha(0) = \mathbf{p}$ and $\alpha'(0) = \mathbf{w}$. Find a α in this case.

Hint In the notes we prove that $T_{\mathbf{p}}(S) = \{J\mathbf{F}(\mathbf{q})\mathbf{x}\}$ when $S = \text{Im }\mathbf{F}$. Look at that proof which constructs a curve within the surface.

Additional Questions

6 Assume $\mathbf{f}: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is a C^1 -function on U. Assume that at $\mathbf{a} \in U$ the Jacobian matrix $J\mathbf{f}(\mathbf{a})$ is of full-rank. Prove that there exists an open set $A: \mathbf{a} \in A \subseteq U$ such that $J\mathbf{f}(\mathbf{x})$ is of full-rank for all $\mathbf{x} \in A$.

7 Let $C \subseteq \mathbb{R}^3$ be the level set

$$\begin{array}{rcl} x^2 z^3 - x^3 z^2 &=& 0,\\ x^2 y + x y^3 &=& 2. \end{array}$$

Show that in some neighbourhood of $\mathbf{p} = (1, 1, 1)^T$, *C* is a curve which can be parametrized by $\mathbf{g}(x) = (x, g_1(x), g_2(x))$ for differentiable functions g_1 and g_2 .

Find a parametrization of the Tangent Line to C at \mathbf{p} .

8 Find the Tangent Plane to the surface

$$x^{3} - y^{3} + xv + uv = 0,$$

$$xu^{2} + yv^{2} = 0.$$

where $(x, y, u, v)^T \in \mathbb{R}^4$, at $\mathbf{p} = (-1, 1, -1, -1)^T$. Give your answer as a level set, and also as a graph. Find a basis for the Tangent Space to the surface at \mathbf{p} .

9 Find parametric equations for the tangent plane passing through the given point $\mathbf{F}(\mathbf{q})$ on the parametric surfaces given by

i. $\mathbf{F}((x,y)^T) = (x^2 + y^2, xy, 2x - 3y)^T$ at $\mathbf{q} = (1,1)^T$. ii. $\mathbf{F}((s,t)^T) = (t\cos s, t\sin s, t)^T$, $\mathbf{q} = (\pi/2, 2)^T$, iii. $\mathbf{F}((s,t)^T) = (t^2\cos s, t^2, t^2\sin s)$, $\mathbf{q} = (0,1)^T$,

10 Find parametric equation for the Tangent Plane passing through the point $\mathbf{F}(\mathbf{q})$ on the parametric surface given by $\mathbf{F}(\mathbf{x}) = (yz, xz, xy, xyz)^T$, for $\mathbf{x} = (x, y, z)^T$ at $\mathbf{q} = (1, -1, 2)^T$.

11. Find the tangent planes at the points $\mathbf{p}_1 = (1/\sqrt{2}, 1/4, 1/4)$ and $\mathbf{p}_2 = (\sqrt{3}/2, 0, 1/4)$ on the ellipsoid $x^2 + 4y^2 + 4z^2 = 1$.

Find the line of intersection of these two planes.

12. i. Find the Tangent Plane to the surface $z = xe^y$ at the point $\mathbf{p} = (1, 0, 1)^T$ on the surface.

ii. The surfaces $x^2 + y^2 - z^2 = 1$ and x + y + z = 5 intersect in a curve Γ . Find the equation in parametric form of the tangent line to Γ at the point $(1, 2, 2)^T$.

13. i. Consider the surface $S = \{(x, y, z)^T \in \mathbb{R}^3 : xy = z\}$. Let $\mathbf{p} = (A, B, C)^T$ be a generic point of S. Find the Tangent Plane at \mathbf{p} .

ii. Show that the intersection of the Tangent Plane with S consists of two straight lines.