Problems 8 Tangent Spaces \& Planes

Tangent Planes to level sets.

1. For each of the following level sets find the tangent plane to the surface at the given point \mathbf{p} and give your answer as a level set.
i. $(x, y, z)^{T} \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=14$ with $\mathbf{p}=(2,1,-3)^{T}$,
ii. $(x, y, z)^{T} \in \mathbb{R}^{3}$:

$$
\begin{aligned}
x^{2}+3 y^{2}+2 z^{2} & =9 \\
x y z & =-2
\end{aligned}
$$

with $\mathbf{p}=(2,-1,1)^{T}$,
iii. $(x, y, u, v) \in \mathbb{R}^{4}$:

$$
\begin{aligned}
x^{3}-3 y u+u^{2}+2 x v & =12 \\
x v^{2}+2 y^{2}-3 u^{2}-3 y v & =-3
\end{aligned}
$$

with $\mathbf{p}=(1,2,-1,2)^{T}$,
2. Return to your answers of Question 1 and write them as graphs instead of level sets. Then give a basis for the Tangent Space.

Tangent Spaces for Image sets.

3. In each case, find parametric equations for the Tangent Plane passing through the point $\mathbf{F}(\mathbf{q})$ on the parametric surfaces given by the following functions.

$$
\text { i. } \mathbf{F}\left((x, y)^{T}\right)=\left(x^{2}+y^{2}, x y, 2 x-3 y\right)^{T}, \quad \text { at } \mathbf{q}=(1,2)^{T},
$$

$$
\text { ii. } \mathbf{F}\left((x, y)^{T}\right)=\left(x y^{2}, x^{2}+y, x^{3}-y^{2}, y^{2}\right)^{T}, \quad \text { at } \mathbf{q}=(-1,2)^{T}
$$

iii. $\mathbf{F}(t)=(\cos t, \sin t, t)^{T}$ at $q=3 \pi$.
4. Return to Question 7 on Sheet 6 . You were asked to show, by using the Implicit Function Theorem, that the following equations

$$
\begin{align*}
x^{2}+y^{2}+2 u v & =4 \tag{1}\\
x^{3}+y^{3}+u^{3}-v^{3} & =0,
\end{align*}
$$

determine u and v as functions of x and y for $(x, y)^{T}$ in an open subset of \mathbb{R}^{2} containing the point $\mathbf{q}=(-1,1)^{T} \in \mathbb{R}^{2}$. The implicit function theorem is an existence result, it does not say what u and v are as functions of x and y. Nonetheless it is possible to find their partial derivatives and you were asked to do this. The answer was

$$
\frac{\partial u}{\partial x}(\mathbf{q})=0, \frac{\partial v}{\partial x}(\mathbf{q})=1, \frac{\partial u}{\partial y}(\mathbf{q})=-1 \quad \text { and } \quad \frac{\partial v}{\partial y}(\mathbf{q})=0 .
$$

Use these partial derivatives to find a basis for the tangent space at $\mathbf{p}=$ $(-1,1,1,1)^{T}$.
5. Let $S(\mathbf{u})=(\cos u \sin v, \sin u \sin v, \cos v)^{T}$, where $\mathbf{u}=(u, v)^{T}$, with $0 \leq$ $v \leq \pi, 0 \leq u \leq 2 \pi$. This is the surface of the unit ball in \mathbb{R}^{3} in standard spherical coordinates.
i. Show that the tangent space of S at $\mathbf{q}=(\pi, \pi / 2)^{T}$ is $T_{\mathbf{p}} S=\operatorname{Span}\left(\mathbf{e}_{2}\right.$, \mathbf{e}_{3}), where $\mathbf{p}=S(\mathbf{q})$.
ii. Determine also the tangent space at $\mathbf{q}=(0, \pi / 4)^{T}$.
iii. \quad a. Let $\mathbf{w}=(1,2,-1)^{T} / \sqrt{6}$. Show that $\mathbf{w} \in T_{\mathbf{p}} S$ where $\mathbf{p}=S\left((0, \pi / 4)^{T}\right)$.
b. (Tricky) The definition of $T_{\mathbf{p}} S$ is that $\mathbf{w} \in T_{\mathbf{p}} S$ only if there exists a curve $a: I \rightarrow S$ such that $\alpha(0)=\mathbf{p}$ and $\alpha^{\prime}(0)=\mathbf{w}$. Find a α in this case.

Hint In the notes we prove that $T_{\mathbf{p}}(S)=\{J \mathbf{F}(\mathbf{q}) \mathbf{x}\}$ when $S=$ $\operatorname{Im} \mathbf{F}$. Look at that proof which constructs a curve within the surface.

Additional Questions

6 Assume $\mathbf{f}: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a C^{1}-function on U. Assume that at a $\in U$ the Jacobian matrix $J \mathbf{f}(\mathbf{a})$ is of full-rank. Prove that there exists an open set $A: \mathbf{a} \in A \subseteq U$ such that $J \mathbf{f}(\mathbf{x})$ is of full-rank for all $\mathbf{x} \in A$.

7 Let $C \subseteq \mathbb{R}^{3}$ be the level set

$$
\begin{array}{r}
x^{2} z^{3}-x^{3} z^{2}=0 \\
x^{2} y+x y^{3}=2
\end{array}
$$

Show that in some neighbourhood of $\mathbf{p}=(1,1,1)^{T}, C$ is a curve which can be parametrized by $\mathbf{g}(x)=\left(x, g_{1}(x), g_{2}(x)\right)$ for differentiable functions g_{1} and g_{2}.

Find a parametrization of the Tangent Line to C at \mathbf{p}.

8 Find the Tangent Plane to the surface

$$
\begin{aligned}
x^{3}-y^{3}+x v+u v & =0, \\
x u^{2}+y v^{2} & =0 .
\end{aligned}
$$

where $(x, y, u, v)^{T} \in \mathbb{R}^{4}$, at $\mathbf{p}=(-1,1,-1,-1)^{T}$. Give your answer as a level set, and also as a graph. Find a basis for the Tangent Space to the surface at \mathbf{p}.

9 Find parametric equations for the tangent plane passing through the given point $\mathbf{F}(\mathbf{q})$ on the parametric surfaces given by
i. $\mathbf{F}\left((x, y)^{T}\right)=\left(x^{2}+y^{2}, x y, 2 x-3 y\right)^{T}$ at $\mathbf{q}=(1,1)^{T}$.
ii. $\mathbf{F}\left((s, t)^{T}\right)=(t \cos s, t \sin s, t)^{T}, \quad \mathbf{q}=(\pi / 2,2)^{T}$, iii. $\mathbf{F}\left((s, t)^{T}\right)=\left(t^{2} \cos s, t^{2}, t^{2} \sin s\right), \quad \mathbf{q}=(0,1)^{T}$,

10 Find parametric equation for the Tangent Plane passing through the point $\mathbf{F}(\mathbf{q})$ on the parametric surface given by $\mathbf{F}(\mathbf{x})=(y z, x z, x y, x y z)^{T}$, for $\mathbf{x}=(x, y, z)^{T}$ at $\mathbf{q}=(1,-1,2)^{T}$.
11. Find the tangent planes at the points $\mathbf{p}_{1}=(1 / \sqrt{2}, 1 / 4,1 / 4)$ and $\mathbf{p}_{2}=$ $(\sqrt{3} / 2,0,1 / 4)$ on the ellipsoid $x^{2}+4 y^{2}+4 z^{2}=1$.

Find the line of intersection of these two planes.
12. i. Find the Tangent Plane to the surface $z=x e^{y}$ at the point $\mathbf{p}=$ $(1,0,1)^{T}$ on the surface.
ii. The surfaces $x^{2}+y^{2}-z^{2}=1$ and $x+y+z=5$ intersect in a curve Γ. Find the equation in parametric form of the tangent line to Γ at the point $(1,2,2)^{T}$.
13. i. Consider the surface $S=\left\{(x, y, z)^{T} \in \mathbb{R}^{3}: x y=z\right\}$. Let $\mathbf{p}=$ $(A, B, C)^{T}$ be a generic point of S. Find the Tangent Plane at \mathbf{p}.
ii. Show that the intersection of the Tangent Plane with S consists of two straight lines.

